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ABSTRACT 

An analysis is developed to account for the effects of 
imperfections on the collapse strength of spherical shells. 
The analysis is empirical but is based on an engineering 
evaluation of recent tests of near-perfect deep spherical 
shells and spherical caps. Sixty-two models were machined 
with local thin spots and flat spots and subjected to 
external hydrostatic pressure. The analysis is in good 
agreement with experimental results despite the severity 
of imperfections selected to test the analysis. The 
limitations of the analysis are discussed and curves showing 
the relationship between out of roundness and local radius 
are presented to aid the design engineer in establishing 
acceptable tolerance limits for fabrication of spherical 
shells. 

ADMINISTRATIVE INFORMATION 

The work described in this report was conducted under the Model 

Basin in-house independent reseejch program, Project S-R011 01 01. 

INTRODUCTION 

The use of spherical shells to resist uniform external hydrostatic 

pressure has increased rapidly in recent years. This increased use 

results from the introduction of missiles and other spacecraft and also 

from the growing interest in hydrospace. 

During the past three years, the David Taylor Model Basin has spent 

considerable effort developing design criteria for deep spherical shells 

for hydrospace applications. This effort is primarily experimental. 

Machined specimens and specimens manufactured according to feasible large- 

scale fabrication procedures are being tested. The effect of initial im- 

perfections, residual stresses, boundary conditions, stiffening systems, 

and penetrations on elastic and inelastic behavior are being studied. 

It became evident early in the program that the collapse strength 

of deep spherical shells was critically dependent upon the presence of 

•H- 
Here a deep spherical shell is contrasted to a shallow spherical shell 

whose height is normally assumed to be less than one-eighth of its base 
radius. 



initial imperfections, primarily departures from perfect sphericity. How- 

ever, no theory or design procedures could be found in the literature which 

adequately considered the effects of imperfections on either elastic or 

inelastic behavior. Furthermore, the magnitude of initial imperfections 

in the test specimens was not measured to the degree of accuracy required 

to evaluate the effects on collapse strength. 

Because of this lack of design tools with which the desigier could 

rationally determine the required geometries for practical deep spherical 

shells, the Model Basin developed a semi-empirical method for designing 

and analyzing initially imperfect spheres. This "engineering type" 

analysis is presented in this report together with the test results of 

machined models designed to investigate its adequacy. 

BACKGROUND 

Timoshenko summarizes the classical small-deflection theory for 

the elastic buckling of a complete sphere as first developed by Zoelly in 

1915. This analysis assumes that buckling will occur at that pressure 

which permits sn equilibrium shape minutely removed from the perfectly 

spherical deflected shape. The expression for this classical buckling 

pressure p, may be given as 

1 i 
2 E (h/R)2 9 

ZZIIIZZ^ = 1.21 E(h/Rr for u = 0.3 [1 ] 

3  (1 - v2) 

where E is Young's modulus, 

h is the shell thickness, 

R is the radius to the midsurface of the shell,  and 

y is Poisson's ratio. 

Unfortunately, the very limited data available prior to the current Model 

Basin program do not support the linear theory; elastic buckling loads of 

roughly one-fourth those predicted by Equation [1] were observed in earlier 
2 

tests recorded in the literature.      Various investigators have attempted 

References are listed on pa^-j 33. 



to explain this discrepancy by introducing nonlinear, large deflection 

shell equations. In effect, their expressions for the theoretical 

buckling pressures resulting from the nonlinear equations take the same 

general form as Equation [1]. However, the elastic buckling coefficients 

corresponding to the minimum pressure required to keep an elastic shell in 

the post-buckling position are often about one-fourth of the classical 

coefficient and thus are generally in fair agreement with the early 

experiments. A more complete background on these large deflection analyses 

is given in References 2 and 3. 
2 4 

The test specimens used in the earlier tests, '    the results of 

which have frequently been compared to the theoretical buckling pressures 

for initially perfect spheres, were formed from flat plates. Thus, al- 

though little data are available, it can be assumed that these early 

specimens had significant departures from sphericity as well as variations 

in thickness and residual, stresses. Those specimens which were not 

complete spheres also had adverse boundary conditions. Since initial 

imperfections affect collapse strength, the comparison of existing theory, 

both linear and nonlinear, with the early experiments is not valid. Until 

recently, '    however, no attempt has been made to theoretically evaluate 

the effect of initial imperfections on the collapse strength of deep or 

complete spheres. 

The large discrepancy between the classical buckling pressure and 

the existing experimental data prompted the Model Basin to test machined 

shells which more closely fulfilled the assumptions of classical 
-i y a 

theory. ' *      These tests demonstrated the effects of initial departures 

from sphericity together with the normally less serious effects of 

variations in thickness, residual stresses, and adverse boundary conditions. 

The collapse strength of these shells was about two to four times greater 

than the collapse strength of the shells formed from flat plates. By 

achieving a maximum 0.9 ratio of experimental collapse pressure to the 

classical elastic buckling pressure, these tests lend considerable support 

to the validity of Zoelly's small deflection theory for initially perfect 

spheres, 

The general effect of initial imperfection or unevenness factors 

on the elastic buckling coefficient obtained in recent Model Basin tests of 



deep spherical shells is discussed in Reference 8 and shown graphically 

in Figure 1. Figure 1 illustrates that no single budding coefficient 

may be used in Equation [1] to calculate the strength of spherical shells 

which have varying degrees of ir.itial imperfections. This figure also 

indicates that although the classical buckling load coefficient is 

apparently valid for perfect spheres, it is impossible to manufacture or 

measure most spherical shells with sufficient accuracy to justify the use 

of the classical equation in design. 

Based on these recent test results, an empirical equation for near- 

perfect spheres was suggested which predicts collapse to occur at about 

0.7 times the classical pressure. This empirical equation for the elastic 

buckling pressure p of near-perfect spheres may be expressed as 

1.4 *;(h/R0)
2 

V3 (1 - .2) 
P3 = = 0.84 E(h/Ro)

2 for v = 0.3        [2] 

where the use of the outer radius R is dictated by simple load equilib- 

rium. Initially perfect shells may buckle at pressures approaching 43 

percent greater than the pressure given by Equation [2]. 

The inelastic buckling strength of initially perfect spheres was 
9 

first investigated by Bijlaard.  He obtained a plasticity reduction 

factor which he applied to the classical elastic buckling equation. His 

collapse pressure pn may be expressed as 

/ E F       9 

PB =2 J^r^ß) = ^y^Ä(h/R)2 for UP = 0-5     C3] 

where E is the secant modulus, 
s ' 

E is the tangent modulus, and 

u    is Poisson's ratio in the plastic range. 

Machined deep spherical shells with ideal boundaries which collapsed 

at stress levels above the elastic limit of the material have also been 
3 7 tested at the Model Basin. *      For each model tested, Bijlaard's inelastic 



buckling theory (Equation [3]) gave collapse pressures higher than the 

corresponding experimental collapse pressures. The collapse strength of 

those models which failed at stress levels above the proportional- limit 

were accurately calculated, however, using an empirical formula based on 

applying a plasticity reduction factor similar to Bijlaard's to the 

empirical Equation [2]. This empirical formula for the inelastic collapse 

pressure of near-perfect spheres may be expressed as 

..4   /^L_(VRo)
2 = 0.84V^-t(h/Ro)

2 

V 3(1 - u2) 
PE = 1.4 . /  \ ' o) = 0.84 VE. K \      0I    for v = 0.3   [4] 

The secant and tangent modulus used in Equations [3], [4], and [5] are 

derived from typical stress-strain curves of the material obtained from 
1; simple compression specimens. In Equation [3], it is assumed on the basis 

of tnin-shell theory that the stress a-, may be calculated by 

P R 
^ =  [5] 

1      2 h 

In Equation  [4], the average stress a       which satisfies equilibrium con- 

ditions for all thicknesses is used and may be calculated by 

PR0
2 

CTAVG="~~ [6] AVt'      2 R h 

It should be pointed out that Equation  [4] neglects the change in 

Poisson's ratio when going from the elastic range to the plastic range. 

This assumption is conservative. 

How well empirical Equation [4] works is demonstrated in Figure 2. 

The ordinate is the ratio of the experimental collapse pressure to the 

classical elastic buckling pressure.    The abscissa is the ratio of the 

empirical inelastic collapse pressure to the classical buckling pressure. 

Both the experimental elastic and inelastic buckling pressures recorded 

in References 3, 7, and 8 are plotted in Figure 2 since Equation [4] 



reduces to Equation [2] in the elastic range. It is apparent that Equation 

[4] adequately predicted the behavior of the machined models. 

Since the recent tests show that the discrepancy between the early 

experiments and classical small deflection theory can be attributed to 

the failure of the experiment to fulfill the rigid theoretical as- 

sumptions, it appears worthwhile to study the effects of imperfections, or 

unevenness factors, on both elastic and inelastic behavior. Since most 

contributions to the unevenness factor, such as variations in thickness, 

residual stresses, boundary conditions, etc. may be, at least on occasions, 

fairly well controlled, the effects of initial departures from sphericity 

seem most worthy of investigation. 

Until very recently, no theoretical or experimental, work had been 

done to study the effects of imperfections on the strength of spherical 

shells. Thompson and Wedellsborg have recently developed analyses for 

the elastic buckling of initially imperfect spheres. Based on a middle 

surface imperfection of assumed shape and amplitude, Thompson solved the 

nonlinear equation for the maximum buckling pressure. This type of 

theoretical approach shows promise of producing the first valid theoretical 

elastic analysis for practical spheres and appears worthy of further in- 

vestigation, Wedellsborg proposed that the elastic buckling strength of 

imperfect spheres could be calculated on the basis of local curvature. 

However, it appears that his analysis would be extremely conservative 

for local "dents" and unsafe for large flat spots. No theoretical work 

has been conducted on the inelastic buckling strength of initially im- 

perfect shells. Prior to the current Model Basin program, no valid ex- 

perimental work has been conducted on initially imperfect deep spherical 

shells due to insufficient measurements of initial contours. 

ANALYSIS 

The strength analysis for initially imperfect spherical shells 

with ideal boundaries presented herein is based on observations of earlier 
3 7 8 10 tests of machined models conducted at the Model Basin.  '  '  '        First, an 

empirical analysis was developed for both the elastic and inelastic 

collapse strength of near-perfect spherical shells with ideal boundaries; 

see Equations [2],  [4], and [6].    Then tests were conducted to determine 



the relationship between unsupported arc length and the elastic and in- 

elastic collapse strength of machined shallow spherical caps with clamped 
3 10 edges. *   The test results of the spherical, caps suggested an approach 

to the strength analysis of initially imperfect spheres which, in essence, 

modifies the analysis for near-perfect spheres. 

The results of the spherical segment models which failed in the 

elastic range are compared in Figure 3 with test results recorded in the 

literature * ~ " and with nonlinear synmetric and nonsymmetric theo- 

ry.    ' The ordinate is the ratio of the experimental collapse pressure 

to the classical pressure, and the abscissa is the nondimensional param- 

eter 9 defined as 

,/. L   0.91 L 
[11/4 a      a 
3/4 (1 - u2) — = —TZ:— for v  = 0.3         [7] J yTih yith 

where L is the unsupported arc length of the shell. 

Whereas previous experiments recorded in the literature showed a 

complete lack of repeatability, the machined segment results followed a 

very definite pattern. Since the primary difference between these and 

earlier specimens was the magnitude of initial departures from sphericity, 

these results demonstrated the detrimental effects of deviations from 

perfect sphericity. These results also demonstrated that a short clamped 

segment can be weaker than a longer clamped segment. Although this 

phenomenon has been implied by existing theoretical studies, it found no 

support in the earlier experiment. It is interesting to note that for the 

first time there is good agreement between experiment and theory through- 

out the range of shallow spherical shells. 

The results of the spherical segment model which failed at stress 

levels above the proportional limit of the material °   are presented in 

Figure 4. The coordinates are the same as those in Figure 3 except the 

empirical inelastic collapse pressure has been substituted for the 

In private correspondence, the authors were informed by H. Weinitschke 
of a programming error in his results reported in Reference 18. The 
corrected results obtained by Weinitschke are shown in Figure 3. 



classical elastic pressure in the ordinate. The results are plotted in 

families of curves which basically represent varying degrees of stability; 

shells with the lowest Pp/P-i are the most stable. The results demonstrate 

that for 9 values greater than approximately 2.2, the detrimental effect 

of clamping the edges diminishes as the shells become more stable. II- 

though the test results discussed thus far have been for near-perfect 

models, they provide the basis for the following analysis of deep spher- 

ical shells with initial imperfections. 

A rather abstract assumption may be made concerning the effects of 

initial imperfections on the basis of the results shown in Figure 4. None 

of the collapse pressures for the shells associated with values of 

greater than about 2.2 to 2.5 were appreciably greater than that predicted 

for complete spheres of the same material and the same thickness to radius 

ratio. In slightly different terminology, clamping the edges of the 

spherical segnents associated with 9 values of 2.2 or greater did not in- 

crease their collapse strength. In fact, those shells associated with 9 

values in the region of 4.5 were weakened by clamping the boundary. Thus, 

Figure 4 demonstrates that the collapse of a spherical shell is a local 

phenomenon and suggests that collapse strength may be better calculated 

on the basis of local geometry over a critical length than on nominal 

geometry as has normally been used in the past. Assuming that a critical 

length L exists which may be associated with a 9 value of 2.2, the ex- 

pression for L becomes 

2.2yfc[h 
L. =  = 2.42 VR, h for u = 0.3       [8] 

J.      ä c 
[3/4  (1 - .2) ^ 

where h is the average thickness over a critical length and R, is the 

local radius to the raidsurface of the shell over a critical arc length 

associated with a 9 value of 2.2. 

Equations [1],  [2],  [4], and [6] may be readily expressed in terms of 

local geometry by 

^ =1.21 E k/Rj   j [9] 



p3 = 0.84 E| V
R1. I [lOl 

P E 0.84 0:s E /V
Ri ) f113 

N 
a       =   [12] 
AVG 

2 R-, h 1 a 

where R, is the local radius to the outside surface of the shell over a 
0 

critical arc length associated with a 9 value of 2.2. 

The primes in Equations [9] through [12] simply indicate that the local 

geometry is used to calculate the pressures and stresses. Equations [11] 

and [12] may be used to calculate the collapse strength of initially 

imperfect spheres which collapse in either the elastic or inelastic region 

since Equation [11] reduces to Equation [10] in the elastic region. 

Since Equations [9] through [12] do not consider the effects of 

secondary moments, Equation [12] can be expected to predict the membrane 

stress at the center of a "flat spot." The consequence of not considering 

secondary moments will be most severe in the region of low ratios of 

elastic to inelastic collapse strength, that is, p'/pj ratios of 1.0 to 
3 & 

possibly 2.0. The effect of secondary moments could be empirically 

accounted for by adjusting the data presented in Figure 4 to reflect the 

rigidity of the boundary conditions. However, it does not appear practical 

to do this for typical shells since it is difficult, if not impossible, 

to accurately describe the boundary condition supporting the local im- 

perfections of critical length. 

The above analysis assumes the absence ol residual stresses, mis- 

match, and adverse boundary conditions and penetrations. It also assumes 

that the shell is loaded by only hydrostatic pressure and not by additional 

local static loads or dynamic loads of any kind. 

Equations [10] through [12] are essentially "engineering type" 

solutions and are not presented as a theoretical treatment of the strength 



of imperfect spherical shells. In this regard, it is highly desirable to 

develop a means by which the analysis may be readily applied to the design 

and evaluation of practical structures. The basic problem in applying 

the analysis is that it is necessary to determine the local radius over 

a critical arc length. One of the simplest ways to do this is to express 

the local radius in terms of deviations from a nominal radius or in terms 

of out-of-roundness. Figure 5 shows the assumed relationship between 

deviations from the nominal radius 6, out-of-roundness A, and local radius 

over a critical arc length for a PoissonTs ratio of 0.3. By simple 

geometric relationships it can be shown that 

AyR   (1 - cos ^ ) - 1^/R (1 - cos a) 

Vh„ = r-A; =       M 
a  ha/R h/R 

By assuming values for R, h , and R-I/R» C may be calculated by 

V2 

a= =1.21i/h /R. [14] 
R1 I   a    J- 

I : 
^ and ^ may be calculated by 
1 \ 2 2       ■^ 

cos ^ =[1 - (R^/R)    (l - cos    a)] [15] 

The results of Equation [13] are presented graphically in Figure 6 for 

t two rather extreme values of h /R. Very significant increases in local 
' a 
j radius are obtained for relatively small deviations from perfect spheric- 

1 ity. For example, the local radius is almost 1.7 times the nominal 

' radius for a A/h of 0.5. 
' a 

' The effect of initial deviations from sphericity is extremely im- 
t 

' portant i;i the elastic buckling case since the local radius appears in 
1 

the appropriate equation to the second power; see Equation [10], To 

demonstrate this effect in more familiar terminology, the elastic buckling 

1 coefficient K for v of 0.3 is plotted against AA in Figure 7. Here 

Equation [10] may be rewritten in terms of nominal radius as 

10 



h-™{hA0f 
[16] 

' 

Considering the effect of initial imperfections is also very important 

when calculating the inelastic buckling strength where the collapse 

pressure is primarily a function of the average stress level. The average 

stress is approximately proportional to the local radius; see Equations 

[11] and [12]. 

It should be remembered that A is associated with a critical arc 

length which may be calculated using Equation [8]. In practice, it is 

often desirable to define the critical length in terms of critical chord 

length L . The ratio of L /R may be easily obtained for various values 
cc cc 

of A/h and h /_ by use of the graph presented in Figure 8. 

EXPERIMENT 

DESCRIPTION OF MODELS 

The three series of models were designed to study the effect of 

local imperfections on the hydrostatic collapse strength of deep spherical 

shells and consisted of the following: 

1. Series FS consisted of 36 models of hemispherical shells each 

bounded by a ring-stiffened cylinder designed to provide conditions of 

membrane deflection and no rotation to the edge of the hemisphere. A 

local flat spot was present in the apex of each hendsphere. 

2. Series VT consisted of 12 models of hemispherical shells each 

bounded by membrane cylinders. A local thin spot was present in the apex 

of each hemisphere. 

3. Series ET consisted of 14 models of spherical segments which 

clamped edges. A local thin spot was present in the apex of each segment. 

Series FS and VT were designed to study both the elastic and in- 

elastic buckling strength of initially imperfect spherical shells. Thus, 

the ratios of shell thickness to radius were selected to study relatively 

stable as well as unstable configurations. Series ET was designed to 

study only the elastic buckling strength of spherical shells with local 

thin spots. 

11 



ALI models in each series were machined from 7075-T6 aluminum bar 

stock with a nominal yield strength of 80,000 psi. Young's modulus E for 

the material, as determined by optical strain gage measurements, was 

10.8 x 10 psi. A Poisson's ratio v  of 0.3 in the elastic range was 

assumed. Tables 1-3 give the model dimensions for each series, and Figure 

9 shows representative ratios of [E E j"'  to E as a function of uniaxial 
S   L 

compressive stress for the material used in each model. 

Series FS Modela 

Series FS consisted of 36 machined models of hemispherical shells 

with local flat spots. The flat spots, which were machined in the apex 

of each model, had an included angle of 10 deg for Models FS-1 through 

FS-9, 20 deg for Models FS-10 through FS-27, and 30 deg for Models FS-28 

through FS-36. The local radius of curvature was held constant for each 

flat spot and was 1.15 times the nominal radius for Models FS-10 through 

FS-18 and 1.4 times the nominal radius for all remaining models. 

Each model was machined in an identical manner. The interior con- 

tours were machined by use of form tools, the exterior contours by 

supporting the inside contours on a mating mandrel and by generating the 

outside surface using a lathe with a ball-turning attachment. 

The wall thickness of each model was measured using a small support- 

ball and a dial gage. The total variation in measured wall thickness was 

normally less than 1 percent of the shell thickness. The flat spot con- 

tours were checked by comparing measured deviations from sphericity at the 

center of the flat spots with calculated values. Excellent agreement was 

obtained for each model. 

Series VT Models 

Series VT consisted of 12 machined models of hemispherical shells 

with local thin spots at the apex. The models were machined in a manner 

identical to that used for Series FS. The thin spots were obtained by 

removing material on the exterior surfaces and had chord lengths from about 

0.17 to 1.0 times the radius. 

The wall thickness of each model was measured at the apex and at 

the edge of the thin spot by use of a support-ball and a dial gage. Un- 

fortunately, the initial contours were not measured. 

12 



Series ET Models 

Series ET consisted of 14 machined models of spherical segments 

with local thin spots at the apex. The arc length of the segments was of 
3 

sufficient length to disregard the effect of the clamped edges.  The 

thickness to radius ratio was selected to ensure collapse in the elastic 

region. The interior contours were generated using a specially designed 
a 

tool.  The exterior contours were obtained by supporting the inside con- 

tours by a mating mandrel and by generating the outside surface using a 

lathe with a ba].l-turning attachment. 

The variation in local inside radii was measured by pivoting a dial 

gage clamped to the special tool for generating inside spherical surfaces. 

Representative measurements are shown in Table 3. These measurements 

indicate that the interior contours deviated from perfect sphericity and 

suggest that some residual stresses were present in the models. 
* 

, 

TEST PROCEDURE AND RESULTS 

Each model was tested under external hydrostatic pressure. Pressure 

was applied in increments and each new pressure level was held at least 1 

minute. The final pressure increment was always less than 2 percent of 

the maximum pressure. Every effort was made to mimimize any pressure surge 

when applying pressure. 

Tables 4-6 present the experimental, collapse pressures. Photographs 

of representative models after collapse are shown in Figure 10, 

COMPARISON OF ANALYSIS WITH EXPERIMENT 

Figure 11 compares the experimental results with the analysis de- 

veloped in this report. The ordinate is the ratio of the experimental col- 

lapse pressure to the modified classical pressure p,' as presented in Equation 

[9]. The abscissa is the ratio of the empirical inelastic buckling pres- 

sure pi to p^. The abscissa, therefore, is a measure of the stability of 

a spherical shell, i.e., the lower values of P^/PT' are the most stable. 

The models could not be stress relieved since 7075-T6 aluminum loses 
its strength when subjected to temperatures sufficient for stress relieving. 

13 
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The comparison between experiment and theory is good, particularly for 

the more stable shells. The scatter shown for the less stable shells 

requires a closer examination of geometries involved. 

The experimental results of the flat spot series models are compared 

with the imperfection analysis is presented in Figure 12. The abscissa is 

the nondimensional parameter ß defined as 

L. 

ß - [3/4 (1 - u2)] 
1/4 

Vv^ 
[17] 

where L.  is the midsurface arc length of the im- 

perfection, 

RT  is the radius of the midsurface of the im- 

perfection, and 

h,™ is the minimum measured thickness of the 

imperfection. 

The ordinate is the ratio of the experimental collapse pressure to the 

pressure predicted by Equation [11]. The thickness h was the measured 

thickness at the center of the flat spot. For those models with ß values 

greater than 2.2, R, is equal to R0 + h (see Table 1 and comments on 

measurements after fabrication). For those models with b values less than 

2.2, R, was determined by passing a radius through a point on the mid- 

surface of the boundary spherical shell and through the point at the mid- 

surface at the center of the flat spot, over an arc length associated with 

a 9 value of 2.2. Model results are presented in terms of margins of 

stability. Those models with ratios R9/RT of 1.15 are marked with an 

asterisk. All other models had R9/RT ratios of 1.40. 

For the wide range of ß values investigated, Figure 12 indicates 

that the comparison between experiment and analysis is good. With the 

exception of eight model tests, all of the models collapsed at pressures 

within approximately 10 percent of predictions. Two things characterize 

those model results which fall more than 10 percent below the predicted 

pressures. All of these models had margins of stability of less than 1.2 

and ratios Rj/R-r o*" 1.40, Figure 4 indicates that secondary moments, which 

14 
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are not considered in the imperfection analysis, have a significant effect 

on the collapse strength of the less stable shells. As indicated in Table 

1, the flat spot models had abrupt changes in curvature. This would not 

be true for imperfections in most practical shells. Thus the flat spots 

investigated by this series of models were severe. Another significant 

result of the flat spot series tests is that the collapse strength of all 

models with A values less than approximately 5 percent of the thickness 

could be predicted by Equation [2]. Thus, the collapse strength of 

spherical shells whose out-of-roundness A is less than about 2 to 3 percent 

of the shell thickness and whose strength is not affected by residual 

stresses, variations in thickness, adverse boundary conditions or other 

factors may be adequately calculated by the empirical formula developed 

for near-perfect spheres. 

The results of the ET series and VT series tests are plotted in 

Figure 13. The abscissa is the nondimensional parameter ß as defined by 

Equation [17]. Again the ordinate is the ratio of the experimental 

collapse pressure to that predicted by Equation [11]. For those models 

with ß values greater than 2.2, R-. was determined from the point at the 
10 

midsurface at the center of the thin spot to a point at the midsurface 

located at a distance L-/2 from the center. For the ET series models, 

measurements made after fabrication were taken into consideration in the 

determination of R, . For the VT-series, nominal model dimensions were 
0 

used (see comments under Description of Models). The thickness h was the 

average of the thicknesses at these two points. The same procedure was 

followed in determining R, and h for those models with e values less 
±Q a 

than 2.2. The thickness h for this case was the average of the thickness 

at the center of the thin spot and the thickness of the boundary spherical 

shell. Thus, in all cases, the determination of the critical local geometry 

was made over an arc length associated with the critical value of e. 

Considering the severity of the imperfections machined in these 

models, the agreement between the analysis and experiment is quite good. 

Thicknesses at the center of the thin spots ranged from approximately 50 

to 80 percent of the thickness at the edge, and all of the material removed 

for the thin spot was taken from one side of the shell, causing significant 

changes in curvature. In practice, thin spots would be much less severe. 

Ä 
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In addition, most of the models had relatively low margins of stability. 

As indicated in Figure 13, only one model failed at a pressure more than 

10 percent below that predicted by the analysis. Many of the models 

failed well above predictions. The collapse of those models with fr values 

greater than approximately five were influenced by the nonsyiranetric mode 

of failure. Whereas thicknesses were averaged over the center portion of 

these thin spots, the models failed in the nonsymmetric mode at the 

boundary where thicknesses were significantly greater; see Figure 10, 

Model ET-13. 

Residual stresses were present in the ET series as demonstrated by 

their failure to hold their contour during the last stages of the machining 

process. Since measurements were not taken on the VT series models, it is 

possible that residual stresses were present. It is difficult if not 

impossible to determine the effects of residual stresses on the observed 

collapse pressures. 

Several important factors are not as yet considered by the imper- 

fection analysis presented in this report. The analysis does not consider 

the effects of secondary moments or adverse boundary conditions. The 

importance of these effects has been mentioned in discussing the model 

results and is shown in Figure 4. For relatively unstable shells, the 

reduction in collapse strength due to adverse boundary conditions is 

significant. As the shells become more stable, however, these effects 

diminish. Another factor not considered by the analysis is the effect of 

residual stresses on collapse strength. It would be extremely difficult 

to take into account theoretically the residual stresses in a shell 

fabricated according to practical large-scale procedures since the 

residual stresses would be present in the shell in some random, unpre- 

dictable pattern. The best approach to this problem appears to be em- 

pirical. The Model Basin has conducted an experimental parametric study 

of large pressed and welded hemispheres in the fabricated and in the 

stress-relieved condition. The elastic behavior of these hemispheres 

agrees well with the imperfection analysis reported here. The collapse 

pressures achieved for the as-fabricated and stress-relieved shells follow 

very definite patterns when the imperfection analysis is applied. A report 

on the results of these tests is in preparation. 

16 



Because of the urgent need for rational design criteria for 

spherical shells, the results reported to date have had an empirical 

bias. Additional programs which include theoretical as well as experi- 

mental treatments are currently being conducted at the Model Basin under 

the sponsorship of the Bureau of Ships. The effects of flat spots, 

boundary conditions, mismatch, penetrations, stiffening systems, residual 

stresses, and laminated construction on the elastic behavior and collapse 

strength of spherical shells are being studied. Parametric model studies 

of practical shells of new materials are also being conducted. It remains 

clear that the presence of initial imperfections must be considered in 

the formulation of any large deflection analysis before such analysis can 

be expected to quantitatively predict the collapse strength of practical 

spherical shells. 

The imperfection analysis presented in this report has been verified 

by the results obtained to date from these studies. Briefly, the 

analysis involves the determination of the critical local geometry of a 

spherical shell over an arc length associated with a 9 value of 2.2 and 

the use of this geometry and not nominal geometry in Equations [11 ] and 

[12]. In analyzing a practical spherical shell, this requires an accurate 

determination of the contours of the shell. Local radii may be determined 

from these contour measurements with the aid of Figure 6, Thickness 

measurements must then be taken and correlated with the contour measure- 

ments to determine the critical value of h /R, . From the design stand- 
a J-o 

point, a minimum thickness must be assumed and acceptable tolerances on 

shape must consider realistic fabrication techniques and the effects of 

out-of-roundness on strength. 

CONCLUSIONS 

1. Equation [11] may be used to adequately calculate the effects of initial 

departure from sphericity and thickness variations on elastic and inelastic 

collapse strength. 

2. The collapse of spherical shells is primarily a local, phenomenon and is 

therefore critically dependent on local geometry. 
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3. Equation [4] may be used to adequately calculate the collapse strength 

of near-perfect spherical shells whose out-of-roundness A is less than 

about 2 to 3 percent of a shell thickness and whose strength is not 

affected by residual stresses, variations in thickness, adverse boundary- 

conditions, or other factors. 

4. The presence of initial imperfections must be considered in the form- 

ulation of any large deflection analysis before such analyses can be ex- 

pected to quantitatively predict the collapse strength of practical spherical 

shells. 
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UNEVENNESS FACTOR 

Figure 1 - Effect of Initial Imperfections on the Elastic 
Buckling Coefficient for Spherical Shells 
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TABUE 1 

Series FS Model Dimensions 

i 

f 
hj+0.0001 

/ r V. 
| 

r* ^1 hl 1 
1.06" L 

2 "of 

 ZRoe 

4 1.625- 

l r^ 
_w 

i       A *—4 

Model in. 

h2 
in. 

CD 

deg. 

R2    ' 
in. 

b 

in. 
X 

in. 

2R
0c 

in. 

2Rof 
in. 

Nuniber 

of "ü's" 

FS- 1 0.0063 0.0062 10 1.138 0 022 '0.044 1  638 1 688 

FS- 2 0.0064 0.0064 30 1 3,38 0 022 0.044 1 038 3  688 

FS- 3 0.0104 0.0104 10 1.3 38 0 028 0.055 1 648 3  702 

FS- 4 0.0104 0.0104 10 1 3 38 ' 0 028 0.055 1  648 3   702 

FS- 5 0.0162 0.03 62 30 1.138 0 079 0.079 1  663 3   753 

FS- 6 0.03 59 0.0363 10 3  138 0 079 0.079 1   663 3   751 

FS- 7 0.0247 0.0249 10 1 138 0 090 0.090 3. 683 3.827 

FS- 8 0.0399 0.0400 10 1 138 0 115 0.115 1 717 1.967 

FS- 9 0.0694 0.0696 10 1 138 0 3 54 0.154 1   789 2.33S 

FS-10 0.0062 0.0052 20 0 934 0 022 0.044 1   638 1 688 

FS-n 0.0063 0.0063 20 0 934 0 022 0.044 1  638 1.688 

FS-12 0.0101 0.0103 20 0 934 0 028 0.055 1   648 1.702 

FS-13 0.0102 0.0102 20 0 934 0 028 0.055 1 648 1.702 

FS-14 0.0159 0.0161 20 0 934 0 079 0.079 1 661 1  751 

FS-15 0.0159 0.0160 20 0 934 0 079 0.079 3   661 1.751 

FS-16 0.0250 0.0250 20 0 934 0 090 0.090 1.683 3.827 

|   FS-17 0.0398 0.0399 20 0 934 0 115 0.115 3   73 7 3.967 

FS-18 0.0694 0.0697 20 0 93« 0 154 0.154 | 1 789 2.338 

FS-19 0.0050 0.0053 20 1 138 0 022 0.044 1.638 1.688 

FS-20 0.0061 0.0061 20 1 138 0 022 0.044 1.638 1.688 

FS-21 0.0102 0.0302 20 1 138 0 028 0.055 1.648 1.702 

j   FS-22 0.0104 0.0103 20 1 138 0 028 0.055 1.648 1.702 

FS-23 0.0158 0.0160 20 1 138 0 079 0.079 1.663 3.751 

FS-24 0.0157 0.0161 20 1 138 0 079 0.079 1.663 1.751 

FS-25 0,0251 0.0253 20 1 138 0 090 0.090 3.683 1.827 

FS-26 0.0400 0.0400 20 1 138 0 115 0.115 1.717 1.967 

««-27 0.0698 0.0699 20 1 138 0 154 0.154 1.789 2.338 

rs-28 0.0061 0.0061 30 1 138 0 022 0.044 1.638 1.688 

FS-29 0.0063 0.0063 30 "   138 0.022 0.044 1.638 1.688 

FS-» 0.0104 0.0104 30 1 138 0 028 0.055 , 1.648 1.702 

FS-31 0.0104 0.0104 30 1.138 0 028 0.055 1.648 1.702 

rs-32 0.0161 0.0163 30 1 138 0 079 0.079 1 1.661 1.751 

re-33 0.0158 0.0159 30 1.138 0.079 0.079 | 1.661 1.751 

[  FS-34 0.0248 0.0248 30 1 138 0 090 0.090 Il.b83 1.827 

|  FS-35 0.0387 0.0387 30 1 138 0 115 0.115 1.717 1.967 2        { 
1  »S-36 0.0700 0.0701 30 1.138 0 154 0.154 1 1.789 2.338 2        1 
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TABLE 2 

Series VT Model Dimensions 

*TAK 

f 
\ 

- 
h 

\ 

\ 
\ 

i -4 
min 

/ s \ 
b/2 

i ( [ 

I 3? 
^1       i 

p 
2R J. ( 

i 

oc I 

- 2.4 

FHIN 

■in"                          ^ 

EN AT EDGE OF  ' SPOT 

Mode]. 
in. 

h3 

in. 

d 

in. 

R3 

in. 

b 

in. in. 

2 R 
oc 

in. 

2 R  J of 

in. 

VT- 1 0.0049 0.0067 0.135 1.860 0.029 0.058 1.649 ].72] 

VT- 2 0.0049 0.0069 0.144 1.860 |   0.029 0.058 1.649 1.723 | 

VT- 3 0.0048 0.0064 0.170 1.224 j   0.029 0.058 1.649 1.721 | 

VT- 4 0.0048 0.0065 0.169 1.224 1  0.029 0.058 1.649 1.721 

VT- 5 0.0048 0.0064 0.286 0.916 |  0.029 0.058 1.649 1.721 | 

VT- 6 0.0048 0.0064 0.308 0.916 j  0.029 0.058 1.649 1.721 

VT- 7 0.0158 0.0212 0.245 1.833 |  0.080 0.080 1.671 1.783 

VT- 8 0.0148 i 0.0205 0.311 1.250 0.080 0.080 1.671 1.783 

VT- 9 0.0149 0.0204 0.565 0.931 |  0.080 0.080 1.671 1.783 1 

VT-10 0.038b 0.0512 0.396 1.831 0.129 0.129 1.741 1.990 

VT-1]. 0.0390 0.0517 0.599 1.294 |  0.129 0.129 1.741 1.990 | 

VT-12 0.382 0.0515 0.846 0.954 0.129 0.129 1.741 1.990 
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TABLE 3 

Series ET Model Dimensions 

* TAKEN  AT EDGE OF THIN   SPOT 

Model 

ET- 1 

ET- 2 

ET- 3 

ET- 4 

ET- 5 

ET- 6 

ET- 7 

ET- 8 

ET- 9 

Ef-10 

ET-11 

ET-12 

ET-12A 

ET-13 

h . 
min 

in. 

0.0087 

0.0107 

0.0098 

0.0104 

0.0073 

0.0107 

0.0103 

0.0090 

0.0115 

0.0114 

0.0115 

0.0085 

0.0085 

0.0115 

in. 

0.0153 

0.0158 

0.0155 

0.0157 

0.0155 

0,0158 

0.0156 

0.0135 

0.0159 

0.0152 

0.0157 

0.0159 

0.0155 

0.0158 

in. 

0.25 

0.29 

0.30 

0.33 

0.37 

0.41 

0.49 

0.57 

0.65 

0.73 

0.81 

0.97 

0.93 

1.29 

7.87 

6.02 

4.68 

3.66 

3.17 

2.69 

2.47 

2.35 

2.27 

2.21 

2.17 

2.29 

2.09 

^4=R4 - 2.0000 

i|i = 0' 

0.0040 

0.0040 

0.0037 

0.0015 

0.0050 

0.0025 

0.0035 

0.0040 

0.0025 

0.0034 

0.0020 

0.0012 

0.0000 

0.0030 

^ = 2' 

0.0037 

0.0040 

0.0035 

0.0015 

0.0050 

0.0020 

0.0025 

0.0032 

0.0015 

0.0032 

0.0020 

0.0010 

0.0001 

0.0029 

0.0018 

0.0030 

0.0031 

0.0015 

0.0035 

0.0014 

O.OOlT 

0.0027 

0.0010 

0.0030 

0.0018 

0.0006 

0.0002 

0.0024 

= 6' 

0.0011 

0.0025 

0.0028 

0.0015 

0.0027 

0.0010 

0.0010 

0.0022 

0.0008 

0.0028 

0.0015 

0.0002 

0.0004 

0.0010 
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TABLE 4 

Summary of Geometric Parameters and Collapse Pressures 
for Series FS Models 

Model P 

psi in. 

h 
a 

in. 
\      Jo/ 

psi 

  

Pexp/PE 0 = 0.91 LJ 

y RL h
a 

1   FS- 1 328 0.99 0.0061 354 0.93 1.53     j 

|   FS- 2 385 0.97 0.0064 398 0.97 1.50 

FS~ 3 1,295 0.92 0.0104 1,190 1.09 1.18     j 

FS- 4 ],230 0.92 0.0104 1,190 1.03 1.18 

|   FS- 5 2,650 0.89 0.0162 2,470 1.07 0.95     j 

1   FS- 6 2,625 0.89 0.0159 2,390 1.09 0.96     j 

FS- 7 4,280 0.86 0.0247 4,125 1.09 0.77     | 

|   FS- 8 7,200 0.86 0.0399 6,960 1.03 0.62 

FS- 9 13,100 0.89 0.0694 12,280 1.07 0.49     j 

FS-10 388 0.94 0.0062 397 0,98 3.45     j 

FS-11 416 0.94 0.0063 410 1.01 3.43 

FS-12 1,050 0.95 0.0101 1,013 1.04 2.66     j 

1   FS-13 1,040 0.95 0.0102 1,030 1.01 2.67     j 

|   FS-14 2,375 0.94 0.0159 2,235 1.06 2.11      j 

FS-15 2,385 0.94 0.0159 2,230 1.07 2.11      j 

FS-16 4,215 0.94 0.0250 4,025 1.05 1.68 

1   FS-17 7,no 0.91 0.0398 6,836 1.04 1.35 

|   FS-18 12,900 0.91 0.0694 12,110 1.07 1.02 

FS-19 153 1.14 0.0050 175 0.87 3.38     j 

FS-20 260 1.14 0.0061 260 1.00 3.06    J 

FS-21 678 1.15 0.0102 71.8 0.94 2.37 

[   FS-22 718 1.15 0.0104 747 0.96 2.35     | 

FS-23 1,830 ].08 0.0158 1,850 0.99 1.88 

FS-24 1,820 1.07 0.0157 1,810 1.01 1:89     j 

FS-25 3,880 1.00 0.0251 3,640 1.07 1.50     j 

FS-26 7,125 0.96 0.0400 6,410 1.11 1.22     | 

FS-27 12,950 0.65 0.0698 11,740 1.10 0.96     j 

FS-28 228 1.14 0.0061 260 0.88 4.59     | 

FS-29 230 1.14 0.0063 276 0.83 4.5"«      | 

FS-30 535 1.15 0.0104 747 0.72 3.52     | 

1   FS-31 525 1.15 0.0104 747 0.70 3.52 

i   K-32 1,325 1.15 0.0161 1,700 0.78 2.84 

FS-33 1,300 1.15 0.01S8 1,675 0.78 2.86     | 

FS-34 2,850 1.16 0.0248 3,025 0.94 2.30 

FS-35 5,800 1.Ö8 0.0387 5,250 1.10 1.85     j 

FS-36 12,000 1.01 0.0700 10,950 1.10 1.41 
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TABUE 5 

Summary of Geometric Parameters and Collapse 
Pressures for Series VT Models 

Model 

psi 

% 

in. 

ha 

in. 

PE = 0.84|/^ha/kg2 

psi 

Pexp/pE 0 = 0.91 1^ 

V^ndn 
| VT- 1 335 0.99 0.0058 311 1.00 1.95 

VT- 2 350 1.00 0.0059 312 1.03 2.08 

VT- 3 315 0.98 0.0056 298 1.06 2.48 

1 VT- 4 345 0.99 0.0057 298 1.16 2.47 

VT- 5 275 0.87 0.0053 300 0.90 4.18 

1 VT- 6 290 0.86 0.0052 306 0.95 4.51        | 

| VT- 7 2,660 0.99 0.0185 2,665 0.95 1.96        | 

| VT- 8 2,200 1.01 0.0177 2,315 0.90 2.59        | 

| VT- 9 2,365 0.88 0.0163 2,335 0.97 4.75        | 

1 VT-10 7,690 1.01 0.0449 6,815 1.10 2.03        | 

1 VT-11 7,150 0.97 0.0443 6,765 1.05 3.10        1 
VT-12 7,460 0.91 0.0416 6,675 1.11 4.53 

TABLE 6 

Summary of Geometric Parameters and Collapse 
Pressures for Series ET Models 

I 

Model Pexp 

psi 

% 

in. 

h a 

in. 

PE'= 0.84 VESE   /h^   \2 

psi 

Pexp/pE ß = 0.91 1^ 

VRh«in 
| ET- 1 377 2.05 0.0133 383 0.98 1.72 

1 ET- 2 360 2.21 0.0141 370 0.97 1.81           j 

1 ET- 3 318 2.39 0.0135 290 1.10 1.95            1 
ET-4 310 2.53 0.0138 270 1.15 2.07 

ET- 5 268 2.44 0.0118 217 1.26 2.78 

ET-.6 365 2.22 0.0133 326 1.12 2.56           1 
| ET- 7 3S0 1.78 0.0117 387 0.90 3.10           j 
1 ET- 8 246 1.80 0.0097 262 0.94 3.86           1 
| ET- 9 357 1.80 0.0122 412 0.87 3.92           1 

ET-IO 295 2.01 0.0119 320 0.92 4.40 

| ET-U 375- 2.02 0.0119 314 1.19 4.90 
ET-12 282 1.92 0.0089 195 1.46 6.80 

ET-12A 223 2.29 0.0090 138 1.62 6.50 

ET-13 460 1.79 0.0117 386 1.19 7.75           j 
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